

0277-5387(95)00138-7

STRUCTURES OF RHODIUM COMPLEXES CONTAINING SUBSTITUTED HYDRAZINES FROM MULTINUCLEAR NMR STUDIES*

BRIAN T. HEATON,[†] CHACKO JACOB and JEYAGOWRY RATNAM

Department of Chemistry, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, U.K.

Abstract—Natural abundance ¹⁵N NMR measurements, using the INEPT pulse sequence, have been used in conjunction with ³¹P NMR studies to elucidate the structures of several rhodium complexes containing monomethyl- and 1,1-dimethyl hydrazine.

There has been much previous work on transition metal complexes containing hydrazine, substituted hydrazine and hydrazido ligands as a result of their importance as intermediates in the conversion of dinitrogen to ammonia and amines.¹⁻³ In the case of alkyl substituted hydrazines, it is known that they are less basic than hydrazine.4,5 For unsymmetrically methyl-substituted hydrazines $(NH_2NH_xMe_{2-x}, x = 0,1)$, the inequivalent nitrogens[‡] obviously have different basicities, and IR studies suggest that protonation always occurs at the methyl-substituted nitrogen atom.⁶ However, in transition metal complexes steric effects appear to be more important than electronic effects, since X-ray studies show that it is the unsubstituted nitrogen, N_a, which coordinates to the metal in $[RuH(COD)(NH_2NMe_2)_3]PF_6$ (COD = 1,5-cyclooctadiene)⁷ and *trans*-[Rh(CO)(NH₂NH_xMe_{2-x}) $(PPh_3)_2$]ClO₄ (x = 0,1).⁸ Nevertheless, the substituted nitrogen can coordinate to a metal, as found for the complex [(COD)ClRu{ μ : η^2 -(NH₂N Me_2 $(\mu$ -Cl) $(\mu$ -H)RuH(COD) BPh₄,⁹ where the hydrazine acts as a bridging ligand, with the two nitrogen atoms being coordinated to different ruthenium atoms.

¹⁵N NMR measurements could be of great value in elucidating the structures of complexes containing coordinated nitrogen, but due to the low natural abundance, low sensitivity and negative gyromagnetic ratio of the ¹⁵N nucleus, most of the previous work has been done on complexes where the nitrogen atoms have been isotopically enriched.¹⁰⁻¹² However, in a previous publication,¹³ we showed how the geometry of [RhH₂(bipy) (PPh₃)₂]Cl could be elucidated from ¹⁵N NMR measurements at the natural abundance level using the INEPT pulse sequence described by Morris and Freeman.¹⁴

We now report how related ¹⁵N NMR measurements on rhodium complexes containing unsymmetrically substituted methyl hydrazines can readily identify which of the two inequivalent nitrogens is coordinated to rhodium through the observation of ¹J(Rh–N) and ¹J(N–H) and, in order to identify the effect of coordination, we also report direct ¹⁵N NMR measurements on the free ligands. These NMR measurements on metal complexes are particularly useful when crystals suitable for X-ray analysis cannot be obtained.

EXPERIMENTAL

General and instrumental

Neat liquids (with CD_2Cl_2 external lock) were used to obtain ¹H and direct ¹⁵N NMR spectra of the ligands, whereas ¹⁵N and ³¹P NMR spectra of the complexes were obtained on solutions (0.16 M) in CH₂Cl₂-CD₂Cl₂ in 10 mm NMR tubes (or in a 1:1 mixture of CH₃OH and CD₂Cl₂) on a Bruker AMX 400 spectrometer operating at 400.13, 40.56 and 161.98 MHz, respectively. The ¹⁵N NMR spec-

^{*} This paper is dedicated to Prof. E. W. Abel on his retirement and in recognition of his outstanding contributions to organometallic and inorganic chemistry.

[†] Author to whom correspondence should be addressed.

[‡] Throughout this paper N_{α} is the NH₂ group and N_{β} is the methyl-substituted nitrogen atom.

tra were referenced to nitromethane (the relationship to other ¹⁵N NMR reference standards has been reviewed by Mason,¹⁵ the ¹H NMR spectra were referenced to TMS and the ³¹P NMR spectra were referenced to 85% H_3PO_4 in D_2O .

[RhCl(PPh₃)₃] and [RhCl(PPh₃)₂]₂ were prepared by standard methods.¹⁶ Monomethylhydrazine and 1,1-dimethylhydrazine were used as supplied by Aldrich. Solvents were dried using standard drying agents. All the complexes were prepared, in NMR tubes *in situ* under nitrogen using standard Schlenk techniques, as follows.

Preparation of [Rh(PPh₃)₃(NH₂NHMe)]Cl (1)

Addition of NH₂NHMe (36 μ l) to a solution of [RhCl(PPh₃)₃] (0.3 g) and PPh₃ (0.5 g) in a mixture of CD₂Cl₂ and MeOH (1:1) gave an orange solution of **1**.

Preparation of $[RhCl(PPh_3)_2(NH_2NHMe)]$ (2) and $[RhCl(PPh_3)_2(NH_2NMe_2)]$ (3)

Addition of the respective hydrazines to $[RhCl(PPh_3)_2]_2$ in the molar ratio 2:1 (1:1 based on Rh) in $CH_2Cl_2-CD_2Cl_2$ gave solutions of 2 and 3.

Preparation of $[Rh(PPh_3)_2(NH_2NHMe)_2]Cl$ (4) and $[Rh(PPh_3)_2(NH_2NMe_2)_2]Cl$ (5)

Addition of the respective hydrazines to $[RhCl(PPh_3)_2]_2$ in the molar ratio 4:1 (2:1 based on Rh) in CD₂Cl₂ and MeOH (1:1) gave solutions of **4** and **5**.

RESULTS AND DISCUSSION

The direct proton-coupled ¹⁵N NMR spectra of NH₂NMe₂, at room temperature and at 213 K, are shown in Fig. 1. The room temperature ¹⁵N NMR spectra of NH₂NMe₂ consists of a sharp resonance at -324 ppm and a broad resonance at -283 ppm, which at low temperature is resolved into a triplet, $\delta(^{15}N) = -283$ ppm, $^{1}J(^{15}N-^{1}H) = 65$ Hz. this indicates that the room temperature resonance at -283 ppm corresponds to the $-NH_2$ nitrogen (N_{α}) , while that at -324 ppm corresponds to the -NMe₂ nitrogen (N_{β}). In the case of NH₂NHMe (Fig. 2), there are two resonances at -329.5 and -306.8 ppm and the resonance at $\delta(^{15}N) = -306.8$ ppm is resolved at low temperature into a quartet with a much smaller coupling constant of 2.6 Hz, which can be attributed to ${}^{2}J({}^{15}N{}^{-1}H)$. This assignment of the low-field ¹⁵N resonance to the --- NHMe

Fig. 1. The direct proton-coupled ¹⁵N NMR spectra of NH_2NMe_2 at room temperature (a) and 213 K (b).

group, N_{β} , is supported by the following observations:

- The ¹⁵N NMR spectrum of NH₂NHMe, even at low temperatures, shows no evidence for ¹J(¹⁵N-¹H) on either of the ¹⁵N resonances.
- 2. The ¹H NMR spectrum of NH₂NHMe both at room and low temperatures consists of two equally intense resonances, one due to the rapidly exchanging N–H protons and the other due to the methyl protons.

The ¹⁵N NMR data for these compounds have been reported previously, but the resonances were not assigned to specific nitrogen atoms.¹⁷

The spectroscopic data for $NH_2NH_xMe_{2-x}$ (x = 0,1) are summarized in Table 1.

In order to structurally characterize the complexes 1–5 described in the Experimental section, we have used a combination of ³¹P and ¹⁵N NMR measurements.

Thus, the ³¹P {¹H} NMR spectrum of 1 consists of a doublet of triplets and a doublet of doublets in the intensity ratio 1:2, consistent with the presence of a T-shaped Rh(PPh₃)₃ group. The proton-decoupled ¹⁵N NMR spectrum obtained using the

Fig. 2. The direct proton-coupled ¹⁵N NMR spectra of NM₂NHMe at room temperature (a) and 243 K (b).

Compound	$\delta(\mathbf{N}_{\alpha})$ (ppm)	$\delta(N_{\beta})$ (ppm)	$^{1}J(N_{\alpha}-H)$ (Hz)	$^{2}J(N_{\beta}-CH)$ (Hz)
NH ₂ NHMe ^a	- 329.5	- 306.8		2.6
NH ₂ NMe ₂ ^b	-283.0	-324.3	65	
^a At 243 K				

Table 1. ¹⁵N NMR data for NH₂NHMe and NH₂NMe₂

INEPT pulse sequence is shown in Fig. 3. It can be seen that one of the resonances is due to a nitrogen atom (N_n) coupled to rhodium and to one transphosphine ligand, while there is no coupling to the other nitrogen resonance (N_B). $[{}^{2}J({}^{15}N{}^{-31}P)$ to cisphosphines is not observed at the resolution obtained in these spectra.] The proton-coupled ^{15}N NMR spectrum of 1 is shown in Fig. 4. The characteristic anti-phase spectrum shows that N_{α} is coupled to two hydrogen atoms, while N_{β} is coupled to one, since the spacing between the anti-phase doublets for N_{α} is almost twice that for N_{β} . This clearly indicates that the $-NH_2$ nitrogen, N_{α} , is coordinated to rhodium and, in conjunction with the ³¹P NMR data, allows us to unambiguously structurally characterize 1 as shown below :

Similarly, the ³¹P {¹H} NMR spectra of **2** and **3** consist of two sets of doublets of doublets, indicating the presence of two inequivalent phosphine groups per rhodium. The ¹⁵N NMR spectrum of **2** is similar to that for **1**, indicating a similar mode of coordination of NH₂NHMe. However, for **3** the resonance of the $-NMe_2$ nitrogen cannot be observed in the ¹⁵N NMR spectrum using the INEPT method, as the values for ¹*J*(¹⁵N–¹H) were used for the transfer of polarization. The ¹⁵N NMR spectrum of **3** thus consists of only the resonance due to the $-NH_2$ group which is coupled to rhodium and a *trans*-phosphine ligand. Thus, **2** and **3** can be formulated as below :

The ${}^{31}P{{}^{1}H}$ NMR spectra of 4 and 5 consist of a single doublet, indicating equivalent phosphines. The ${}^{15}N$ NMR spectra are similar to 2 and 3, and we can formulate these compounds as :

All the spectroscopic data for the complexes 1-5 are summarized in Tables and 2 and 3.

It is thus clear that ¹⁵N NMR in conjunction with ³¹P NMR spectroscopy is a powerful tool for elucidating the structures of nitrogen-containing rhodium/phosphine complexes.

The ¹⁵N NMR spectra, which can be acquired at the natural abundance level, are of significant importance, since such measurements provide an unambiguous distinction between hydrazine and hydrazido ligands, which is usually impossible to obtain from X-ray crystallography even when suitable crystals can be obtained.

Acknowledgements—We thank the SERC and Hovione Sociedade Quimica SA for financial support and Dr J. A. Iggo for useful discussions on INEPT measurements.

Fig. 3. The proton-decoupled ¹⁵N NMR spectrum of $[Rh(PPh_3)_3(NH_2NHMe)]Cl$ (1) obtained using the

INEPT pulse sequence at 243 K.

Fig. 4. The proton-coupled ${}^{15}N$ NMR spectrum of $[Rh(PPh_3)_3(NH_2NHMe)]Cl$ (1) obtained using the INEPT pulse sequence at 243 K.

Table 2. ³¹P{¹H} NMR data for rhodium complexes containing substituted hydrazines, $NH_2NH_xMe_{2-x} (x = 0,1)^a$

Complex ^b	$\delta(^{31}P_a)$ (ppm)	$\delta(^{31}P_b)$ (ppm)	¹ J(¹⁰³ Rh- ³¹ P _a) (Hz)	$^{1}J(^{103}\text{Rh}-^{31}\text{P}_{b})$ (Hz)	${}^{2}J({}^{31}P_{a}-{}^{31}P_{b})$ (Hz)
1	34.2	45.8	145.1	162.8	40.0
2	55.0 ^c	48.4 ^c	201.8	168.4	49.0
3	54.0°	46.8 ^c	202.9	168.7	48.4
4		52.0		173.3	
5		52.0		174.0	

^{*a*} P_a is *trans* to PPh₃ or Cl. P_b is trans to NH₂NH_xMe_{2-x} (x = 0,1).

^b See text for numbering scheme.

^e These assignments can be reversed.

Table 3. ¹⁵N NMR data for rhodium complexes containing substituted hydrazines, $NH_2NH_xMe_{2-x}$ (x = 0,1) in $CD_2Cl_2-CH_2Cl_2$ for 2 and 3 and $CD_2Cl_2-CH_3OH$ for 1, 4 and 5 at 243 K^a

Complex ^b	$\delta(^{15}N_{\alpha})$ (ppm)	$\delta(^{15}N_{\beta})$ (ppm)	$^{1}J(^{103}Rh-^{15}N_{\alpha})$ (Hz)	$\frac{^{2}J(^{31}\mathbf{P}_{trans}-^{15}\mathbf{N}_{\alpha})}{(\mathrm{Hz})}$
1	-317.8	-313.8	11.2	29.5
2	-312.1	-316.6	10.6	36.8
3	-291.8		11.7	38.1
4	-320.1	-316.6	15.0	29.0
5	-295.0		10.6	28.5

" N_{α} is the NH₂ group, N_{β} is the methyl-substituted nitrogen.

^b See text for numbering scheme.

REFERENCES

- 1. J. R. Dilworth, Co ord. Chem. Rev. 1976, 21, 29.
- 2. F. Bottomley, Quart. Rev. Chem. Soc. 1970, 24, 617.
- 3. J. A. McCleverty, *Transition Met. Chem.* 1987, **12**, 282.
- 4. R. L. Hinman, J. Org. Chem. 1958, 23, 1587.
- 5. F. E. Condon, J. Am. Chem. Soc. 1965, 87, 4491.
- R. F. Evans and W. Kynaston, J. Chem. Soc. 1963, 3151.
- 7. T. V. Ashworth, M. J. Nolte and E. Singleton, J. Chem. Soc., Dalton Trans. 1978, 1040.
- C. J. Davies, I. M. Dodd, M. M. Harding, B. T. Heaton, C. Jacob and J. Ratnam, J. Chem. Soc., Dalton Trans. 1994, 787.
- T. V. Ashworth, M. J. Nolte, R. H. Reimann and E. Singleton, J. Chem. Soc., Chem. Commun. 1977, 757.

- T. G. Appleton, J. R. Hall and S. F. Ralph, *Inorg. Chem.* 1988, 27, 4435.
- 11. T. A. Appleton and M. R. Cox, *Magn. Reson. Chem.* 1991, **29**, 580.
- 12. A. R. Seidle, R. A. Newmark and R. D. Howells, Inorg. Chem. 1988, 27, 2473.
- 13. B. T. Heaton, C. Jacob, W. Heggie, P. R. Page and I. Villax, *Magn. Reson. Chem.* 1991, **29**, S21.
- 14. G. A. Morris and R. Freeman, J. Am. Chem. Soc. 1979, 101, 760.
- J. Mason, *Multinuclear NMR*, p. 335. Plenum Press, New York (1987).
- J. A. Osborn, F. H. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc. A 1966, 1711.
- R. L. Lichter and J. D. Roberts, J. Am. Chem. Soc. 1972, 94, 4904.